miércoles, 3 de diciembre de 2008

4 unidad bilogia

Ácido ribonucleico.
El ácido ribonucleico (ARN o RNA) es un ácido nucleico formado por una larga cadena de nucleótidos. Se ubica en las células de tipo procariota y las de tipo eucariota. El ARN se define también como un material genético de ciertos virus (virus ARN) y, en los organismos celulares, molécula que dirige las etapas intermedias de la síntesis proteica. En los virus ARN, esta molécula dirige dos procesos: la síntesis de proteínas (producción de las proteínas que forman la cápsula del virus) y replicación (proceso mediante el cual el ARN forma una copia de sí mismo). En los organismos celulares es otro tipo de material genético, llamado ácido desoxirribonucleico (ADN), el que lleva la información que determina la estructura de las proteínas. Pero el ADN no puede actuar solo, y se vale del ARN para transferir esta información vital durante la síntesis de proteínas (producción de las proteínas que necesita la célula para sus actividades y su desarrollo).
Como el ADN, el ARN está formado por una cadena de compuestos químicos llamados nucleótidos. Cada uno está formado por una molécula de un azúcar llamado ribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina, guanina, uracilo y citosina. Estos compuestos se unen igual que en el ácido desoxirribonucleico (ADN). El ARN se diferencia químicamente del ADN por dos cosas: la molécula de azúcar del ARN contiene un átomo de oxígeno que falta en el ADN; y el ARN contiene la base uracilo en lugar de la timina del ADN.
El ARN es transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado en el transcurso por muchas más proteínas. El uracilo, aunque es muy diferente, puede formar puentes de hidrógeno con la adenina, lo mismo que la timina lo hace en el ADN. El porqué el ARN contiene uracilo en vez de timina es actualmente una pregunta sin respuesta.
//
Flujo de la información genética
El material genético de las células se encuentra en forma de ADN. Dentro de las moléculas de ADN se encuentra la información necesaria para sintetizar las proteínas que utiliza el organismo; pero el proceso no es lineal, es bastante complejo. El ADN no se traduce directamente en proteínas.
En las células eucariotas el ADN se encuentra encerrado en el núcleo. La síntesis de ADN se hace en el núcleo, así como también la síntesis de ARN, pero la síntesis de proteínas ocurre en el citoplasma. El mecanismo por el cual la información se trasvasa desde el núcleo celular al citoplasma es mediante la trascripción del ARN a partir del ADN y de la traducción de proteínas a partir de ARN.
ARN, el mensajero
Parte del ADN se transcribe en ARN. El ARN va como un mensajero al citoplasma y allí el ribosoma es el lugar físico para la traducción de los genes a proteínas.
Tipos de ARN
ARN codificantes:
ARN mensajero (mRNA o ARNm)
ARN no codificantes (ncRNA o ARNnc):
intrones (que representan el 30% del genoma)
ARN que se expresan de forma autónoma (50-70% de la transcripción total en los eucariotas superiores):
básicos:
ARN de transferencia (tRNA o ARNt)
ARN ribosómico (rRNA o ARNr)
ARN nucleolar (snoRNA)
pequeños ARN nucleares (snRNA), implicados en splicing
ARN de la telomerasa
·
o
reguladores:
ARN de interferencia
micro ARN
ARN en otros organismos
El ARN es el material genético usado por los virus, y el ARN también es importante en la producción de proteínas en otros organismos vivos. La mecánica del ARN en los organismos eucarioticos es similar en los organismos procarióticos. El ARN puede moverse dentro de las células de los organismos vivos y por consiguiente sirve como una suerte de mensajero genético, transmitiendo la información guardada en el ADN de la célula, desde el núcleo hacia otras partes de la célula donde se usa para ayudar a producir proteínas. Una sola hebra de ADN se usa a la vez, el RNA polimerasa es la enzima que cataliza el proceso y las bases nitrogenadas son las mismas. Solo que en los procariotas, no existe el núcleo delimitado por membrana (carioteca).
Transcripción
El ARN se transcribe a partir de una de las dos cadenas del ADN. En caso contrario, al transcribirse ambas al mismo tiempo, de una de las hélices saldría una proteína y de la otra algo totalmente diferente.
Por ejemplo, si en una de las cadenas de ADN hubiera: GATACA, en la otra cadena, la homóloga, debería haber: CTATGT.
La primera al transcribirse a ARN daría dos codones: GAU-ACA. La segunda CUA-UGU.
La primera formaría la cadena de aminoácidos siguiente. En el primer caso: Ácido Aspártico-Treonina y en el segundo caso: Leucina-Cisteína.
Que sólo se transcriba una hélice no significa que siempre sea la misma a lo largo de todo el cromosoma. Puede transcribirse una hélice en un sitio y otra en otro.
En la traducción de codones a aminoácidos intervienen otras moléculas de ARN, las llamadas ARN de transferencia.
Algunas moléculas de ARN presentan actividad catalítica, y son conocidas como ribozimas. La mayoría de los ARN son autocatalíticos, ya que catalizan su propio procesamiento. Su hallazgo es relativamente reciente, y antes se consideraba que solo las proteínas eran las únicas macromoléculas capaces de poseer actividad catalítica.


A D N
Pruebas de ADN, utilización de restos orgánicos para identificar el ácido desoxirribonucleico (ADN) de una persona. Se ha realizado un buen número de pruebas científicas que prueban que el ADN es la base de la herencia, entre las que se pueden destacar: a) en el proceso normal de reproducción celular, los cromosomas (estructuras con ADN) se duplican para proporcionar a los núcleos hijos los mismos genes que la célula madre; b) las mutaciones provocadas se producen por una alteración de la estructura del ADN que tienen como efecto una grave alteración de la descendencia de las células afectadas; c) el ADN extraído de un virus basta por sí mismo para reproducir el virus entero, por lo que parece claro que, en la esfera jurídica y a efectos legales, tiene toda la información genética para ello. Por todo ello, el ADN puede llegar a ser muy útil en Derecho, no sólo para identificar a una persona gracias a los restos orgánicos encontrados donde se haya cometido un crimen (en especial en delitos contra la libertad sexual o en los que se ha ejercido violencia), sino también para determinar la filiación biológica de una persona.
Ácido desoxirribonucleico (ADN), material genético de todos los organismos celulares y casi todos los virus. El ADN lleva la información necesaria para dirigir la síntesis de proteínas y la replicación. Se llama síntesis de proteínas a la producción de las proteínas que necesita la célula o el virus para realizar sus actividades y desarrollarse. La replicación es el conjunto de reacciones por medio de las cuales el ADN se copia a sí mismo cada vez que una célula o un virus se reproduce y transmite a la descendencia la información que contiene. En casi todos los organismos celulares el ADN está organizado en forma de cromosomas, situados en el núcleo de la célula.
ESTRUCTURA
Cada molécula de ADN está constituida por dos cadenas o bandas formadas por un elevado número de compuestos químicos llamados nucleótidos. Estas cadenas forman una especie de escalera retorcida que se llama doble hélice. Cada nucleótido está formado por tres unidades: una molécula de azúcar llamada desoxirribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina (abreviada como A), guanina (G), timina (T) y citosina (C). La molécula de desoxirribosa ocupa el centro del nucleótido y está flanqueada por un grupo fosfato a un lado y una base al otro. El grupo fosfato está a su vez unido a la desoxirribosa del nucleótido adyacente de la cadena. Estas subunidades enlazadas desoxirribosa-fosfato forman los lados de la escalera; las bases están enfrentadas por parejas, mirando hacia el interior, y forman los travesaños.
Los nucleótidos de cada una de las dos cadenas que forman el ADN establecen una asociación específica con los correspondientes de la otra cadena. Debido a la afinidad química entre las bases, los nucleótidos que contienen adenina se acoplan siempre con los que contienen timina, y los que contienen citosina con los que contienen guanina. Las bases complementarias se unen entre sí por enlaces químicos débiles llamados enlaces de hidrógeno.
En 1953, el bioquímico estadounidense James Watson y el biofísico británico Francis Crick publicaron la primera descripción de la estructura del ADN. Su modelo adquirió tal importancia para comprender la síntesis proteica, la replicación del ADN y las mutaciones, que los científicos obtuvieron en 1962 el Premio Nobel de Medicina por su trabajo.
SÍNTESIS PROTEICA
El ADN incorpora las instrucciones de producción de proteínas. Una proteína es un compuesto formado por moléculas pequeñas llamadas aminoácidos, que determinan su estructura y función. La secuencia de aminoácidos está a su vez determinada por la secuencia de bases de los nucleótidos del ADN. Cada secuencia de tres bases, llamada triplete, constituye una palabra del código genético o codón, que especifica un aminoácido determinado. Así, el triplete GAC (guanina, adenina, citosina) es el codón correspondiente al aminoácido leucina, mientras que el CAG (citosina, adenina, guanina) corresponde al aminoácido valina. Por tanto, una proteína formada por 100 aminoácidos queda codificada por un segmento de 300 nucleótidos de ADN. De las dos cadenas de polinucleótidos que forman una molécula de ADN, sólo una, llamada paralela, contiene la información necesaria para la producción de una secuencia de aminoácidos determinada. La otra, llamada antiparalela, ayuda a la replicación.
La síntesis proteica comienza con la separación de la molécula de ADN en sus dos hebras. En un proceso llamado transcripción, una parte de la hebra paralela actúa como plantilla para formar una nueva cadena que se llama ARN mensajero o ARNm (véase Ácido ribonucleico). El ARNm sale del núcleo celular y se acopla a los ribosomas, unas estructuras celulares especializadas que actúan como centro de síntesis de proteínas. Los aminoácidos son transportados hasta los ribosomas por otro tipo de ARN llamado de transferencia (ARNt). Se inicia un fenómeno llamado traducción que consiste en el enlace de los aminoácidos en una secuencia determinada por el ARNm para formar una molécula de proteína.
Un gen es una secuencia de nucleótidos de ADN que especifica el orden de aminoácidos de una proteína por medio de una molécula intermediaria de ARNm. La sustitución de un nucleótido de ADN por otro que contiene una base distinta hace que todas las células o virus descendientes contengan esa misma secuencia de bases alterada. Como resultado de la sustitución, también puede cambiar la secuencia de aminoácidos de la proteína resultante. Esta alteración de una molécula de ADN se llama mutación. Casi todas las mutaciones son resultado de errores durante el proceso de replicación. La exposición de una célula o un virus a las radiaciones o a determinados compuestos químicos aumenta la probabilidad de sufrir mutaciones.
REPLICACIÓN
En casi todos los organismos celulares, la replicación de las moléculas de ADN tiene lugar en el núcleo, justo antes de la división celular. Empieza con la separación de las dos cadenas de polinucleótidos, cada una de las cuales actúa a continuación como plantilla para el montaje de una nueva cadena complementaria. A medida que la cadena original se abre, cada uno de los nucleótidos de las dos cadenas resultantes atrae a otro nucleótido complementario previamente formado por la célula. Los nucleótidos se unen entre sí mediante enlaces de hidrógeno para formar los travesaños de una nueva molécula de ADN. A medida que los nucleótidos complementarios van encajando en su lugar, una enzima llamada ADN polimerasa los une enlazando el grupo fosfato de uno con la molécula de azúcar del siguiente, para así construir la hebra lateral de la nueva molécula de ADN. Este proceso continúa hasta que se ha formado una nueva cadena de polinucleótidos a lo largo de la antigua; se reconstruye así un nueva molécula con estructura de doble hélice.
HERRAMIENTAS Y TÉCNICAS PARA EL ESTUDIO DEL ADN
Existen numerosas técnicas y procedimientos que emplean los científicos para estudiar el ADN. Una de estas herramientas utiliza un grupo de enzimas especializadas, denominadas enzimas de restricción, que fueron encontradas en bacterias y que se usan como tijeras moleculares para cortar los enlaces fosfato de la molécula de ADN en secuencias específicas. Las cadenas de ADN que han sido cortadas con estas enzimas presentan extremos de cadena sencilla, que pueden unirse a otros fragmentos de ADN que presentan extremos del mismo tipo. Los científicos utilizan este tipo de enzimas para llevar a cabo la tecnología del ADN recombinante o ingeniería genética. Esto implica la eliminación de genes específicos de un organismo y su sustitución por genes de otro organismo.
Otra herramienta muy útil para trabajar con ADN es un procedimiento llamado reacción en cadena de la polimerasa (RCP), también conocida como PCR por su traducción directa del inglés (polymerase chain reaction). Esta técnica utiliza una enzima denominada ADN polimerasa que copia cadenas de ADN en un proceso que simula la forma en la que el ADN se replica de modo natural en la célula. Este proceso, que ha revolucionado todos los campos de la biología, permite a los científicos obtener gran número de copias a partir de un segmento determinado de ADN.
La tecnología denominada huella de ADN (DNA fingerprinting) permite comparar muestras de ADN de diversos orígenes, de manera análoga a la comparación de huellas dactilares. En esta técnica los investigadores utilizan también las enzimas de restricción para romper una molécula de ADN en pequeños fragmentos que separan en un gel al que someten a una corriente eléctrica (electroforesis); de esta manera, los fragmentos se ordenan en función de su tamaño, ya que los más pequeños migran más rápidamente que los de mayor tamaño. Se puede obtener así un patrón de bandas o huella característica de cada organismo. Se utiliza una sonda (fragmento de ADN marcado) que hibride (se una específicamente) con algunos de los fragmentos obtenidos y, tras una exposición a una película de rayos X, se obtiene una huella de ADN, es decir, un patrón de bandas negras característico para cada tipo de ADN.
Un procedimiento denominado secuenciación de ADN permite determinar el orden preciso de bases nucleótidas (secuencia) de un fragmento de ADN. La mayoría de los tipos de secuenciación de ADN se basan en una técnica denominada extensión de oligonucleótido (primer extension) desarrollada por el biólogo molecular británico Frederick Sanger. En esta técnica se lleva a cabo una replicación de fragmentos específicos de ADN, de tal modo que el extremo del fragmento presenta una forma fluorescente de una de las cuatro bases nucleótidas. Los modernos secuenciadores de ADN parten de la idea del biólogo molecular estadounidense Leroy Hood, incorporando ordenadores y láser en el proceso.
Los científicos ya han completado la secuenciación del material genético de varios microorganismos incluyendo la bacteria Escherichia coli. En 1998 se llevó a cabo el reto de la secuenciación del genoma de un organismo pluricelular, un gusano nematodo conocido como Caenorhabditis elegans. En el año 2000 se descifró el material genético de la mosca del vinagre (Drosophila melanogaster) y de la planta Arabidopsis thaliana, entre otros organismos. Pero el acontecimiento más importante, dentro de este grupo de investigaciones, fue el desciframiento del genoma humano llevado a cabo en febrero de 2001, de manera independiente, por el consorcio público internacional Proyecto Genoma Humano y la empresa privada Celera Genomics.
APLICACIONES
La investigación sobre el ADN tiene un impacto significativo, especialmente en el ámbito de la medicina. A través de la tecnología del ADN recombinante los científicos pueden modificar microorganismos que llegan a convertir en auténticas fábricas para producir grandes cantidades de sustancias útiles. Por ejemplo, esta técnica se ha empleado para producir insulina (necesaria para los enfermos de diabetes) o interferón (muy útil en el tratamiento del cáncer). Los estudios sobre el ADN humano también revelan la existencia de genes asociados con enfermedades específicas como la fibrosis quística y determinados tipos de cáncer. Esta información puede ser valiosa para el diagnóstico preventivo de varios tipos de enfermedades.
La medicina forense utiliza técnicas desarrolladas en el curso de la investigación sobre el ADN para identificar delincuentes. Las muestras de ADN tomadas de semen, piel o sangre en el escenario del crimen se comparan con el ADN del sospechoso; el resultado es una prueba que puede utilizarse ante los tribunales. Véase Pruebas de ADN.
El estudio del ADN también ayuda a los taxónomos a establecer las relaciones evolutivas entre animales, plantas y otras formas de vida, ya que las especies más cercanas filogenéticamente presentan moléculas de ADN más semejantes entre sí que cuando se comparan con especies más distantes evolutivamente. Por ejemplo, los buitres americanos están más emparentados con las cigüeñas que con los buitres europeos, asiáticos o africanos, a pesar de que morfológicamente y etológicamente son más similares a estos últimos.
La agricultura y la ganadería se valen ahora de técnicas de manipulación de ADN conocidas como ingeniería genética y biotecnología. Las estirpes de plantas cultivadas a las que se han transferido genes pueden rendir cosechas mayores o ser más resistentes a los insectos. También los animales se han sometido a intervenciones de este tipo para obtener razas con mayor producción de leche o de carne o razas de cerdo más ricas en carne y con menos gras









La sexualidad es un universo complejo en el cual intervienen aspectos tanto biológicos, como psicológicos y sociales.
La sexualidad engloba una serie de condiciones culturales, sociales, anatómicas, fisiológicas, emocionales, afectivas y de conducta, relacionadas con el sexo que caracterizan de manera decisiva al ser humano en todas las fases de su desarrollo.
Encontrar una definición de sexualidad es una tarea difícil ya que la sexualidad hace referencia a un concepto multiforme, extenso, profundo y variadísimo de elementos que todos unidos forman el concepto de sexualidad como un todo.
La sexualidad es un término dinámico.
La sexualidad es vivida y entendida de modos diversos en a lo largo y ancho de la geografia mundial atendiendo a las diferentes culturas, ideales, modelos de sociedad y de educación.
Además de este condicionante socio-cultural, debemos tener en cuenta que la sexualidad es un concepto dinámico que ha ido evolucionando de la mano de la Historia del ser humano.
No podemos encajonar la sexualidad como algo estático y predecible, sino como un todo que envuelve la vida del hombre, que evoluciona a lo largo de la historia, y no sólo de la Historia en mayúsculas, sino también en la historia personal de cada individuo. La sexualidad nos acompaña desde que nacemos hasta que morimos, y va moldeándose al ritmo de nuestras experiencias de vida, poniendo su sello en todo lo que vemos, entendemos, sentimos y vivimos.

Elementos de la sexualidad
Podemos destacar algunos elementos que se engloban dentro del concepto de sexualidad:
El impulso sexual
El impulso sexual que va dirigido tanto al placer sexual inmediato, como a la procreación. cacherismo metiendo la pnga asta adentro
Identidad sexual y orientación sexual
La identidad sexual y orientación sexual se entienden como tendencias sexuales en cuanto a aspectos de la relación psicológica con el propio cuerpo (sentirse hombre, mujer o ambos a la vez) y en cuanto a atracción sexual hacia un sexo, otro o ambos (heterosexualidad, homosexualidad o bisexualidad).
Relaciones sociales
En la vida diaria, la sexualidad cumple un papel muy importante, ya que, desde el punto de vista emocional, afectivo y social, va mucho más allá de la finalidad reproductiva y compromete la vida de pareja, de familia, y los lazos afectivos interpersonales.
Ademas, la sexualidad juega un papel muy importante en la vida de la gente, ya que si no se vive una sexualidad plena, o no se esta satisfecho con ella; simplemente la persona no puede ser del todo feliz.
Dimensiones de la sexualidad
Cómo ya apuntábamos en la definición, la sexualidad engloba tres dimensiones básicas del ser humano de forma decisiva en su desarrollo: biológica, psicológica y social. Y a pesar de que vamos a desarrollarlas brevemente, no debemos olvidar que el ser humano es una unidad holística e indivisible, de modo que estas tres dimensiones están íntimamente relacionadas y condicionadas unas por otras, por lo que no podemos separar el cuerpo físico de la mente, de las creencias o de la educación recibida. Sin embargo vamos a abordarlas una por una para facilitar nuestro estudio de la sexualidad:
Dimensión biológica de la sexualidad
La dimensión biológia de la sexualidad en el ser humano, provee del sustrato anatómico fisiológico sobre el que se desarrollarán los distintos matices de la sexualidad de la persona.
La dimensión biológica es crucial en distintos ámbitos de la vida sexual, como son: la procreación, el deseo sexual, la respuesta sexual, etc. Todos ellos están influenciados por la anatomía sexual. Así mismo la alteración física o fisiológica (del funcionamiento), puede acarrear distintos trastornos sexuales o enfermedades, que afecten a la vida sexual de la persona.
En este apartado incluimos factores como:
Sistema genético
La carga cromosómica del genoma humano "XX" "XY", que se define en la fecundación, es uno de los factores determinantes en la dimensión biológica del sexo de la persona.
Sistema hormonal
El sistema endocrino, gracias a las glándulas endocrinas es el encargado de mantener los niveles de hormonas necesarios para el correcto funcionamiento de nuestro organismo.
Concretamente las hormonas más directamente implicadas en la sexualidad humana son: la testosterona, la progesterona, los estrógenos.
Estos tres tipos de hormonas están presentes tanto en las mujeres como en los hombres, auque en diferentes cantidades y proporciones, de modo que los hombres poseen principalmente testosterona (por eso se conoce como hormona masculina) y una pequeña cantidad de estrógenos y progesterona, al contrario las mujeres segregan en su mayoría estrógenos y progesterona (por eso se conocen como hormonas femeninas) y sólo una pequeña cantidad de testosterona.
Los niveles de hormonas sexuales también varían de una persona a otra y dependiendo de los momentos de la vida.
Estructura anatómico-fisiológica
La anatomía física del hombre y la mujer determinan aspectos de la relación sexual, respuesta sexual, excitación, procreación, etc
En este apartado se contemplan tanto la anatomia y fisiología de los genitales masculinos y femeninos, así como los carácteres sexuales secundarios.
Dimensión psicológica de la sexualidad
La psique (mente) humana juega un papel fundamental en nuestro modo de vivir y sentir nuestra sexualidad. Nuestras forma de percibir la belleza, nuestras ideas sobre lo que está bien o mal en cuanto al sexo, nuestra personalidad, nuestras convicciones, el temperamento de cada persona, son factores decisivos en nuestras relaciones sexuales. Nuestra propia identidad sexual, nuestra orientación sexual, depende en gran manera de nuestro modo de vernos y entendernos psicológicamente en relación a lo sexual.
Dimensión social de la sexualidad
La dimensión social, engloba el papel fundamental que ejerce la familia, los amigos, la educación recibida en el colegio, la religión , etc, sobre la sexualidad.
Las distintas sociedades poseen modelos distintos de entender y vivir la sexualidad. Es por ello que existen grandes mitos sobre la calidez erótica de los latinos, la represión sexual de los paises árabes, etc

1 comentario:

Gabriel Blanco Aguilar dijo...

hola no se quien seas ni a que grupo perteneces, ademas tu blog esta incompleto no tiene todo lo que solicite, hagalo bien y me lo manda, ademas ponga sus datos por favor